Two eggs, two different constraints: a potential explanation for the puzzling intraclutch egg size dimorphism in Eudyptes penguins
نویسندگان
چکیده
Phenotypic plasticity and phenotypic stability are major components of the adaptive evolution of organisms to environmental variation. The invariant two-egg clutch size of Eudyptes penguins has recently been proposed to be a unique example of a maladaptive phenotypic stability, while their egg mass is a plastic trait. We tested whether this phenotypic plasticity during reproduction might result from constraints imposed by migration (migratory carry-over effect) and breeding (due to the depletion of female body reserves). For the first time, we examined whether these constraints differ between eggs within clutches and between egg components (yolk and albumen). The interval between colony return and clutch initiation positively influenced the yolk mass, the albumen mass, and the subsequent total egg mass of first-laid eggs. This time interval had only a slight negative influence on the yolk mass of second-laid eggs and no influence on their albumen and subsequent total masses. For both eggs, female body mass at laying positively influenced albumen and total egg masses. Female investment into the entire clutch was not related to the time in the colony before laying but increased with female body mass. These novel results suggest that the unique intraclutch egg size dimorphism exhibited in Eudyptes penguins, with first-laid eggs being consistently smaller than second-laid eggs, might be due to a combination of constraints: a migratory carry-over effect on the first-laid egg and a body reserve depletion effect on the second-laid egg. Both these constraints might explain why the timing of reproduction, especially egg formation, is narrow in migratory capital breeders.
منابع مشابه
Extreme intraclutch egg-size dimorphism in Eudyptes penguins, an evolutionary response to clutch-size maladaptation.
Eudyptes penguins (six species) are uniquely characterized by a two-egg clutch with extreme intraclutch egg-size dimorphism (ESD): the first-laid A-egg is 17.5%-56.9% smaller than the B-egg. Although A-eggs are viable, they almost never produce fledged chicks (genus average <1%). Using classical life-history theory and phylogenetic comparative methods, we demonstrate a marked slowdown in the li...
متن کاملA carryover effect of migration underlies individual variation in reproductive readiness and extreme egg size dimorphism in macaroni penguins.
Where life-history stages overlap, there is the potential for physiological conflicts that might be important in mediating carryover effects. However, our knowledge of the specific physiological mechanisms underlying carryover effects remains rudimentary, and specific examples remain rare. Here we show that female macaroni penguins (Eudyptes chrysolophus) initiate vitellogenesis and yolk format...
متن کاملMigratory constraints on yolk precursors limit yolk androgen deposition and underlie a brood reduction strategy in rockhopper penguins.
Hormonally mediated maternal effects link maternal phenotype and environmental conditions to offspring phenotype. The production of lipid-rich maternal yolk precursors may provide a mechanism by which lipophilic steroid hormones can be transported to developing yolks, thus predicting a positive correlation between yolk precursors in mothers and androgen levels in eggs. Using rockhopper penguins...
متن کاملMigratory life histories explain the extreme egg-size dimorphism of Eudyptes penguins.
When successive stages in the life history of an animal directly overlap, physiological conflicts can arise resulting in carryover effects from one stage to another. The extreme egg-size dimorphism (ESD) of Eudyptes penguins, where the first-laid A-egg is approximately 18-57% smaller than the second-laid B-egg, has interested researchers for decades. Recent studies have linked variation in this...
متن کاملIntra-Clutch Ratio of Yolk Progesterone Level Changes with Laying Date in Rockhopper Penguins: A Strategy to Influence Brood Reduction?
Hatching asynchrony in avian species generally leads to a size hierarchy among siblings, favouring the first-hatched chicks. Maternally deposited hormones affect the embryo and chick's physiology and behaviour. It has been observed that progesterone, a hormone present at higher levels than other steroid hormones in egg yolks, is negatively related to body mass in embryos, chicks and adults. A d...
متن کامل